Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Biol Chem ; 298(12): 102660, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328245

RESUMO

Loss of functional fragile X mental retardation protein (FMRP) causes fragile X syndrome, the leading form of inherited intellectual disability and the most common monogenic cause of autism spectrum disorders. FMRP is an RNA-binding protein that controls neuronal mRNA localization and translation. FMRP is thought to inhibit translation elongation after being recruited to target transcripts via binding RNA G-quadruplexes (G4s) within the coding sequence. Here, we directly test this model and report that FMRP inhibits translation independent of mRNA G4s. Furthermore, we found that the RGG box motif together with its natural C-terminal domain forms a noncanonical RNA-binding domain (ncRBD) that is essential for translational repression. The ncRBD elicits broad RNA-binding ability and binds to multiple reporter mRNAs and all four homopolymeric RNAs. Serial deletion analysis of the ncRBD identified that the regions required for mRNA binding and translational repression overlap but are not identical. Consistent with FMRP stalling elongating ribosomes and causing the accumulation of slowed 80S ribosomes, transcripts bound by FMRP via the ncRBD cosediment with heavier polysomes and were present in puromycin-resistant ribosome complexes. Together, this work identifies a ncRBD and translational repression domain that shifts our understanding of how FMRP inhibits translation independent of mRNA G4s.


Assuntos
Proteína do X Frágil de Retardo Mental , Quadruplex G , Humanos , Proteína do X Frágil de Retardo Mental/química , Proteína do X Frágil de Retardo Mental/metabolismo , Motivo de Reconhecimento de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo
2.
Biochemistry ; 61(12): 1199-1212, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35653700

RESUMO

The fragile X proteins (FXPs) are a family of RNA-binding proteins that regulate mRNA translation to promote proper neural development and cognition in mammals. Of particular interest to researchers is the fragile X mental retardation protein (FMRP), as its absence leads to a neurodevelopmental disorder: fragile X syndrome (FXS), the leading monogenetic cause of autism spectrum disorders. A primary focus of research has been to determine mRNA targets of the FXPs in vivo through pull-down techniques, and to validate them through in vitro binding studies; another approach has been to perform in vitro selection experiments to identify RNA sequence and structural targets. These mRNA targets can be further investigated as potential targets for FXS therapeutics. The most established RNA structural target of this family of proteins is the G-quadruplex. In this article, we report a 99 nucleotide RNA target that is bound by all three FXPs with nanomolar equilibrium constants. Furthermore, we determined that the last 102 amino acids of FMRP, which includes the RGG motif, were necessary and sufficient to bind this RNA target. To the best of our knowledge, this is one of only a few examples of non-G-quadruplex, non-homopolymer RNAs bound by the RGG motif/C-termini of FMRP.


Assuntos
Síndrome do Cromossomo X Frágil , Quadruplex G , Animais , Proteína do X Frágil de Retardo Mental/química , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Mamíferos/metabolismo , Biossíntese de Proteínas , RNA/metabolismo , RNA Mensageiro/metabolismo
3.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502075

RESUMO

Fragile X-related disorders (FXDs), also known as FMR1 disorders, are examples of repeat expansion diseases (REDs), clinical conditions that arise from an increase in the number of repeats in a disease-specific microsatellite. In the case of FXDs, the repeat unit is CGG/CCG and the repeat tract is located in the 5' UTR of the X-linked FMR1 gene. Expansion can result in neurodegeneration, ovarian dysfunction, or intellectual disability depending on the number of repeats in the expanded allele. A growing body of evidence suggests that the mutational mechanisms responsible for many REDs share several common features. It is also increasingly apparent that in some of these diseases the pathologic consequences of expansion may arise in similar ways. It has long been known that many of the disease-associated repeats form unusual DNA and RNA structures. This review will focus on what is known about these structures, the proteins with which they interact, and how they may be related to the causative mutation and disease pathology in the FMR1 disorders.


Assuntos
Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/genética , Expansão das Repetições de Trinucleotídeos , Animais , Proteína do X Frágil de Retardo Mental/química , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Humanos
4.
Sci Rep ; 11(1): 8163, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854084

RESUMO

CGG tandem repeat expansion in the 5'-untranslated region of the fragile X mental retardation-1 (FMR1) gene leads to unusual nucleic acid conformations, hence causing genetic instabilities. We show that the number of G…G (in CGG repeat) or C…C (in CCG repeat) mismatches (other than A…T, T…A, C…G and G…C canonical base pairs) dictates the secondary structural choice of the sense and antisense strands of the FMR1 gene and their corresponding transcripts in fragile X-associated tremor/ataxia syndrome (FXTAS). The circular dichroism (CD) spectra and electrophoretic mobility shift assay (EMSA) reveal that CGG DNA (sense strand of the FMR1 gene) and its transcript favor a quadruplex structure. CD, EMSA and molecular dynamics (MD) simulations also show that more than four C…C mismatches cannot be accommodated in the RNA duplex consisting of the CCG repeat (antisense transcript); instead, it favors an i-motif conformational intermediate. Such a preference for unusual secondary structures provides a convincing justification for the RNA foci formation due to the sequestration of RNA-binding proteins to the bidirectional transcripts and the repeat-associated non-AUG translation that are observed in FXTAS. The results presented here also suggest that small molecule modulators that can destabilize FMR1 CGG DNA and RNA quadruplex structures could be promising candidates for treating FXTAS.


Assuntos
Ataxia/genética , Proteína do X Frágil de Retardo Mental/química , Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/genética , RNA Mensageiro/química , Tremor/genética , Regiões 5' não Traduzidas , Dicroísmo Circular , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Expansão das Repetições de Trinucleotídeos
5.
Curr Biol ; 31(6): R273-R275, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33756134

RESUMO

Paul Hagerman and Randi Hagerman introduce the X-linked neurodevelopmental disorder Fragile X syndrome (FXS) and discuss what causes this disorder and how it can be treated.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/terapia , Adulto , Ataxia/genética , Transtorno Autístico , Feminino , Proteína do X Frágil de Retardo Mental/química , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Humanos , Masculino , Mutação , Tremor/genética
6.
RNA ; 27(4): 390-402, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33483368

RESUMO

G-quadruplexes (G4s) are four-stranded nucleic acid structures that arise from the stacking of G-quartets, cyclic arrangements of four guanines engaged in Hoogsteen base-pairing. Until recently, most RNA G4 structures were thought to conform to a sequence pattern in which guanines stacking within the G4 would also be contiguous in sequence (e.g., four successive guanine trinucleotide tracts separated by loop nucleotides). Such a sequence restriction, and the stereochemical constraints inherent to RNA (arising, in particular, from the presence of the 2'-OH), dictate relatively simple RNA G4 structures. Recent crystallographic and solution NMR structure determinations of a number of in vitro selected RNA aptamers have revealed RNA G4 structures of unprecedented complexity. Structures of the Sc1 aptamer that binds an RGG peptide from the Fragile-X mental retardation protein, various fluorescence turn-on aptamers (Corn, Mango, and Spinach), and the spiegelmer that binds the complement protein C5a, in particular, reveal complexity hitherto unsuspected in RNA G4s, including nucleotides in syn conformation, locally inverted strand polarity, and nucleotide quartets that are not all-G. Common to these new structures, the sequences folding into G4s do not conform to the requirement that guanine stacks arise from consecutive (contiguous in sequence) nucleotides. This review highlights how emancipation from this constraint drastically expands the structural possibilities of RNA G-quadruplexes.


Assuntos
Aptâmeros de Nucleotídeos/química , Quadruplex G , Guanina/química , RNA/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Complemento C5a/química , Complemento C5a/genética , Complemento C5a/metabolismo , Corantes Fluorescentes/química , Proteína do X Frágil de Retardo Mental/química , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Guanina/metabolismo , Humanos , Ligação Proteica , RNA/genética , RNA/metabolismo , Estereoisomerismo
7.
Biochemistry ; 59(40): 3813-3822, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32945655

RESUMO

The fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates the translation of numerous mRNAs in neurons. The precise mechanism of translational regulation by FMRP is unknown. Some studies have indicated that FMRP inhibits the initiation step of translation, whereas other studies have indicated that the elongation step of translation is inhibited by FMRP. To determine whether FMRP inhibits the initiation or the elongation step of protein synthesis, we investigated m7G-cap-dependent and IRES-driven, cap-independent translation of several reporter mRNAs in vitro. Our results show that FMRP inhibits both m7G-cap-dependent and cap-independent translation to similar degrees, indicating that the elongation step of translation is inhibited by FMRP. Additionally, we dissected the RNA-binding domains of hFMRP to determine the essential domains for inhibiting translation. We show that the RGG domain, together with the C-terminal domain (CTD), is sufficient to inhibit translation, while the KH domains do not inhibit mRNA translation. However, the region between the RGG domain and the KH2 domain may contribute as NT-hFMRP shows more potent inhibition than the RGG-CTD tail alone. Interestingly, we see a correlation between ribosome binding and translation inhibition, suggesting the RGG-CTD tail of hFMRP may anchor FMRP to the ribosome during translation inhibition.


Assuntos
Proteína do X Frágil de Retardo Mental/metabolismo , Elongação Traducional da Cadeia Peptídica , Proteína do X Frágil de Retardo Mental/química , Humanos , Iniciação Traducional da Cadeia Peptídica , Ligação Proteica , Domínios Proteicos , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
8.
Elife ; 92020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510328

RESUMO

The sorting of RNA molecules to subcellular locations facilitates the activity of spatially restricted processes. We have analyzed subcellular transcriptomes of FMRP-null mouse neuronal cells to identify transcripts that depend on FMRP for efficient transport to neurites. We found that these transcripts contain an enrichment of G-quadruplex sequences in their 3' UTRs, suggesting that FMRP recognizes them to promote RNA localization. We observed similar results in neurons derived from Fragile X Syndrome patients. We identified the RGG domain of FMRP as important for binding G-quadruplexes and the transport of G-quadruplex-containing transcripts. Finally, we found that the translation and localization targets of FMRP were distinct and that an FMRP mutant that is unable to bind ribosomes still promoted localization of G-quadruplex-containing messages. This suggests that these two regulatory modes of FMRP may be functionally separated. These results provide a framework for the elucidation of similar mechanisms governed by other RNA-binding proteins.


Assuntos
Proteína do X Frágil de Retardo Mental , Neuritos/metabolismo , Neurônios/metabolismo , Transporte de RNA/genética , RNA Mensageiro , Animais , Células Cultivadas , Proteína do X Frágil de Retardo Mental/química , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil , Quadruplex G , Técnicas de Inativação de Genes , Camundongos , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Mol Pain ; 16: 1744806920928619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32496847

RESUMO

Chronic pain has detrimental effects on one's quality of life. However, its treatment options are very limited, and its underlying pathogenesis remains unclear. Recent research has suggested that fragile X mental retardation protein is involved in the development of chronic pain, making it a potential target for prevention and treatment. The current review of literature will examine the function of fragile X mental retardation protein and its associated pathways, through which we hope to gain insight into how fragile X mental retardation protein may contribute to nociceptive sensitization and chronic pain.


Assuntos
Dor Crônica/metabolismo , Proteína do X Frágil de Retardo Mental/metabolismo , Animais , Proteína do X Frágil de Retardo Mental/química , Humanos , Canais Iônicos/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
10.
Nucleic Acids Res ; 48(2): 862-878, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31740951

RESUMO

The Fragile X Mental Retardation Protein (FMRP) is an RNA binding protein that regulates translation and is required for normal cognition. FMRP upregulates and downregulates the activity of microRNA (miRNA)-mediated silencing in the 3' UTR of a subset of mRNAs through its interaction with RNA helicase Moloney leukemia virus 10 (MOV10). This bi-functional role is modulated through RNA secondary structures known as G-Quadruplexes. We elucidated the mechanism of FMRP's role in suppressing Argonaute (AGO) family members' association with mRNAs by mapping the interacting domains of FMRP, MOV10 and AGO and then showed that the RGG box of FMRP protects a subset of co-bound mRNAs from AGO association. The N-terminus of MOV10 is required for this protection: its over-expression leads to increased levels of the endogenous proteins encoded by this co-bound subset of mRNAs. The N-terminus of MOV10 also leads to increased RGG box-dependent binding to the SC1 RNA G-Quadruplex and is required for outgrowth of neurites. Lastly, we showed that FMRP has a global role in miRNA-mediated translational regulation by recruiting AGO2 to a large subset of RNAs in mouse brain.


Assuntos
Proteínas Argonautas/genética , Proteína do X Frágil de Retardo Mental/genética , Biossíntese de Proteínas , RNA Helicases/genética , Animais , Proteínas Argonautas/química , Encéfalo/metabolismo , Proteína do X Frágil de Retardo Mental/química , Quadruplex G , Humanos , Camundongos , MicroRNAs/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Conformação de Ácido Nucleico , Processamento de Proteína Pós-Traducional/genética , RNA Helicases/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
11.
Mol Psychiatry ; 25(8): 1688-1703, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31822816

RESUMO

The Fragile X Mental Retardation Protein (FMRP) is an RNA-binding protein essential to the regulation of local translation at synapses. In the mammalian brain, synapses are constantly formed and eliminated throughout development to achieve functional neuronal networks. At the molecular level, thousands of proteins cooperate to accomplish efficient neuronal communication. Therefore, synaptic protein levels and their functional interactions need to be tightly regulated. FMRP generally acts as a translational repressor of its mRNA targets. FMRP is the target of several post-translational modifications (PTMs) that dynamically regulate its function. Here we provide an overview of the PTMs controlling the FMRP function and discuss how their spatiotemporal interplay contributes to the physiological regulation of FMRP. Importantly, FMRP loss-of-function leads to Fragile X syndrome (FXS), a rare genetic developmental condition causing a range of neurological alterations including intellectual disability (ID), learning and memory impairments, autistic-like features and seizures. Here, we also explore the possibility that recently reported missense mutations in the FMR1 gene disrupt the PTM homoeostasis of FMRP, thus participating in the aetiology of FXS. This suggests that the pharmacological targeting of PTMs may be a promising strategy to develop innovative therapies for patients carrying such missense mutations.


Assuntos
Proteína do X Frágil de Retardo Mental/química , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Processamento de Proteína Pós-Traducional , Animais , Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/genética , Humanos , Sinapses/metabolismo , Sinapses/patologia
12.
Science ; 365(6455): 825-829, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31439799

RESUMO

Membraneless organelles involved in RNA processing are biomolecular condensates assembled by phase separation. Despite the important role of intrinsically disordered protein regions (IDRs), the specific interactions underlying IDR phase separation and its functional consequences remain elusive. To address these questions, we used minimal condensates formed from the C-terminal disordered regions of two interacting translational regulators, FMRP and CAPRIN1. Nuclear magnetic resonance spectroscopy of FMRP-CAPRIN1 condensates revealed interactions involving arginine-rich and aromatic-rich regions. We found that different FMRP serine/threonine and CAPRIN1 tyrosine phosphorylation patterns control phase separation propensity with RNA, including subcompartmentalization, and tune deadenylation and translation rates in vitro. The resulting evidence for residue-specific interactions underlying co-phase separation, phosphorylation-modulated condensate architecture, and enzymatic activity within condensates has implications for how the integration of signaling pathways controls RNA processing and translation.


Assuntos
Proteínas de Ciclo Celular/química , Proteína do X Frágil de Retardo Mental/química , Poliadenilação , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Transição de Fase , Fosforilação , Serina/química , Transdução de Sinais , Treonina/química , Tirosina/química
13.
PLoS One ; 14(5): e0217275, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31112584

RESUMO

Fragile X syndrome, the most common inherited form of intellectual disability, is caused by the CGG trinucleotide expansion in the 5'-untranslated region of the Fmr1 gene on the X chromosome, which silences the expression of the fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA, which encodes for the postsynaptic density protein 95, and together with microRNA-125a to mediate the reversible inhibition of the PSD-95 mRNA translation in neurons. The miR-125a binding site within the PSD-95 mRNA 3'-untranslated region (UTR) is embedded in a G-rich region bound by FMRP, which we have previously demonstrated folds into two parallel G-quadruplex structures. The FMRP regulation of PSD-95 mRNA translation is complex, being mediated by its phosphorylation. While the requirement for FMRP in the regulation of PSD-95 mRNA translation is clearly established, the exact mechanism by which this is achieved is not known. In this study, we have shown that both unphosphorylated FMRP and its phosphomimic FMRP S500D bind to the PSD-95 mRNA G-quadruplexes with high affinity, whereas only FMRP S500D binds to miR-125a. These results point towards a mechanism by which, depending on its phosphorylation status, FMRP acts as a switch that potentially controls the stability of the complex formed by the miR-125a-guided RNA induced silencing complex (RISC) and PSD-95 mRNA.


Assuntos
Proteína 4 Homóloga a Disks-Large/biossíntese , Proteína do X Frágil de Retardo Mental/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Substituição de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Proteína 4 Homóloga a Disks-Large/genética , Proteína do X Frágil de Retardo Mental/química , Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Quadruplex G , Humanos , MicroRNAs/química , MicroRNAs/genética , Modelos Moleculares , Fosforilação , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Elife ; 82019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30857592

RESUMO

Viruses manipulate host cells to enhance their replication, and the identification of cellular factors targeted by viruses has led to key insights into both viral pathogenesis and cell biology. In this study, we develop an HIV reporter virus (HIV-AFMACS) displaying a streptavidin-binding affinity tag at the surface of infected cells, allowing facile one-step selection with streptavidin-conjugated magnetic beads. We use this system to obtain pure populations of HIV-infected primary human CD4+ T cells for detailed proteomic analysis, and quantitate approximately 9000 proteins across multiple donors on a dynamic background of T cell activation. Amongst 650 HIV-dependent changes (q < 0.05), we describe novel Vif-dependent targets FMR1 and DPH7, and 192 proteins not identified and/or regulated in T cell lines, such as ARID5A and PTPN22. We therefore provide a high-coverage functional proteomic atlas of HIV infection, and a mechanistic account of host factors subverted by the virus in its natural target cell.


Assuntos
Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/virologia , Regulação da Expressão Gênica , Infecções por HIV/metabolismo , Proteoma , Separação Celular , Análise por Conglomerados , Proteínas de Ligação a DNA/química , Proteína do X Frágil de Retardo Mental/química , Proteínas de Fluorescência Verde/química , HIV-1/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Lentivirus , Ativação Linfocitária , Magnetismo , Metiltransferases/química , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 22/química , Proteômica , Estreptavidina/química , Replicação Viral , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química
15.
Prog Biophys Mol Biol ; 141: 3-14, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30905341

RESUMO

Fragile X Mental Retardation Protein (FMRP) is a RNA-binding protein (RBP) known to control different steps of mRNA metabolism, even though its complete function is not fully understood yet. Lack or mutations of FMRP lead to Fragile X Syndrome (FXS), the most common form of inherited intellectual disability and a leading monogenic cause of autism spectrum disorder (ASD). It is well established that FMRP has a multi-domain architecture, a feature that allows this RBP to be engaged in a large interaction network with numerous proteins and mRNAs or non-coding RNAs. Insights into the three-dimensional (3D) structure of parts of its three domains (N-terminus, central domain and C-terminus) were obtained using Nuclear Magnetic Resonance and X-ray diffraction, but the complete 3D arrangement of each domain with respect to the others is still missing. Here, we review the structural features of FMRP and of the network of its protein and RNA interactions. Understanding these aspects is the first necessary step towards the design of novel compounds for new therapeutic interventions in FXS.


Assuntos
Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Animais , Sequência Conservada , Evolução Molecular , Proteína do X Frágil de Retardo Mental/química , Humanos , Domínios Proteicos , RNA/metabolismo
16.
Neuroscience ; 404: 282-296, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30742966

RESUMO

Fragile X mental retardation protein (FMRP), a key determinant of normal brain development and neuronal plasticity, plays critical roles in nucleocytoplasmic shuttling of mRNAs. However, the factors involved in FMRP nuclear localization remain to be determined. Using cross-species sequence comparison, we show that an aspartate in position 132 (D132), located within the conserved nuclear localization signal (NLS) of FMRP, appears in human and other mammals, while glutamate 132 (E132) appears in rodents and birds. Human FMRP-D132E alters the secondary structure of the protein and reduces its nuclear localization, while the reciprocal substitution in mouse FMRP-E132D promotes its nuclear localization. Human FMRP could interact with poly(A)-binding protein 1 (PABP1) which is impeded by the D132E mutation. Reversely, mouse FMRP could not interact with PABP1, but the E132D mutation leads to the FMRP-PABP1 interaction. We further show that overexpression of human FMRP-D132E mutant promotes the formation of cytoplasmic aggregates of PABP1 in human cells, but not of mouse FMRP-E132D in mouse cells. PABP1 knockdown reduces the nuclear localization of human FMRP, but not mouse FMRP. Furthermore, RNase A treatment decreases the PABP1 levels in the anti-V5-immunoprecipitates using the V5-hFMRP-transfected cells, suggesting an interaction between human FMRP and PABP1 in an RNA-dependent fashion. Thus, our data suggest that the FMRP protein with the human-used D132 accommodates a novel protein-RNA-protein interaction which may implicate a connection between FMRP residue transition and neural evolution.


Assuntos
Núcleo Celular/metabolismo , Proteína do X Frágil de Retardo Mental/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , RNA/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proteína do X Frágil de Retardo Mental/química , Proteína do X Frágil de Retardo Mental/genética , Células HEK293 , Humanos , Camundongos , Proteína I de Ligação a Poli(A)/química , Proteína I de Ligação a Poli(A)/genética , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , RNA/química , RNA/genética , Especificidade da Espécie
17.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1379-1388, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30771487

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited neurodegenerative disorder caused by an expansion of 55 to 200 CGG repeats (premutation) in FMR1. These CGG repeats are Repeat Associated non-ATG (RAN) translated into a small and pathogenic protein, FMRpolyG. The cellular and molecular mechanisms of FMRpolyG toxicity are unclear. Various mitochondrial dysfunctions have been observed in FXTAS patients and animal models. However, the causes of these mitochondrial alterations are not well understood. In the current study, we investigated interaction of FMRpolyG with mitochondria and its role in modulating mitochondrial functions. Beside nuclear inclusions, FMRpolyG also formed small cytosolic aggregates that interact with mitochondria both in cell and mouse model of FXTAS. Importantly, expression of FMRpolyG reduces ATP levels, mitochondrial transmembrane potential, mitochondrial supercomplexes assemblies and activities and expression of mitochondrial DNA encoded transcripts in cell and animal model of FXTAS, as well as in FXTAS patient brain tissues. Overall, these results suggest that FMRpolyG alters mitochondrial functions, bioenergetics and initiates cell death. The further study in this direction will help to establish the role of mitochondria in FXTAS conditions.


Assuntos
Ataxia/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/genética , Mitocôndrias/genética , RNA Mensageiro/genética , Tremor/genética , Expansão das Repetições de Trinucleotídeos , Trifosfato de Adenosina/biossíntese , Idoso , Idoso de 80 Anos ou mais , Animais , Ataxia/metabolismo , Ataxia/patologia , Linhagem Celular Tumoral , Cerebelo/metabolismo , Cerebelo/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/genética , Proteína do X Frágil de Retardo Mental/química , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Expressão Gênica , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial/genética , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/metabolismo , Neurônios/patologia , Agregados Proteicos/genética , RNA Mensageiro/metabolismo , Tremor/metabolismo , Tremor/patologia
18.
Mol Neurobiol ; 56(1): 711-721, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29796988

RESUMO

The fragile X syndrome (FXS) arises from loss of expression or function of the FMR1 gene and is one of the most common monogenic forms of intellectual disability and autism. During the past two decades of FXS research, the fragile X mental retardation protein (FMRP) has been primarily characterized as a cytoplasmic RNA binding protein that facilitates transport of select RNA substrates through neural projections and regulation of translation within synaptic compartments, with the protein products of such mRNAs then modulating cognitive functions. However, the presence of a small fraction of FMRP in the nucleus has long been recognized. Accordingly, recent studies have uncovered several mechanisms or pathways by which FMRP influences nuclear gene expression and genome function. Some of these pathways appear to be independent of the classical role for FMRP as a regulator of translation and point to novel functions, including the possibility that FMRP directly participates in the DNA damage response and in the maintenance of genome stability. In this review, we highlight these advances and discuss how these new findings could contribute to our understanding of FMRP in brain development and function, the neural pathology of fragile X syndrome, and perhaps impact of future therapeutic considerations.


Assuntos
Proteína do X Frágil de Retardo Mental/metabolismo , Genoma , Animais , Núcleo Celular/metabolismo , Epigênese Genética , Proteína do X Frágil de Retardo Mental/química , Instabilidade Genômica , Humanos , Modelos Biológicos
19.
Nat Commun ; 9(1): 757, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472612

RESUMO

Fragile X syndrome (FXS) is the most frequent inherited cause of intellectual disability and the best-studied monogenic cause of autism. FXS results from the functional absence of the fragile X mental retardation protein (FMRP) leading to abnormal pruning and consequently to synaptic communication defects. Here we show that FMRP is a substrate of the small ubiquitin-like modifier (SUMO) pathway in the brain and identify its active SUMO sites. We unravel the functional consequences of FMRP sumoylation in neurons by combining molecular replacement strategy, biochemical reconstitution assays with advanced live-cell imaging. We first demonstrate that FMRP sumoylation is promoted by activation of metabotropic glutamate receptors. We then show that this increase in sumoylation controls the homomerization of FMRP within dendritic mRNA granules which, in turn, regulates spine elimination and maturation. Altogether, our findings reveal the sumoylation of FMRP as a critical activity-dependent regulatory mechanism of FMRP-mediated neuronal function.


Assuntos
Espinhas Dendríticas/metabolismo , Proteína do X Frágil de Retardo Mental/metabolismo , Sumoilação , Sequência de Aminoácidos , Animais , Células Cultivadas , Espinhas Dendríticas/genética , Espinhas Dendríticas/patologia , Feminino , Proteína do X Frágil de Retardo Mental/química , Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Modelos Neurológicos , Fenótipo , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vesículas Secretórias/metabolismo , Homologia de Sequência de Aminoácidos
20.
Mol Biosyst ; 13(8): 1448-1457, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28612854

RESUMO

G quadruplex structures have been predicted by bioinformatics to form in the 5'- and 3'-untranslated regions (UTRs) of several thousand mature mRNAs and are believed to play a role in translation regulation. Elucidation of these roles has primarily been focused on the 3'-UTR, with limited focus on characterizing the G quadruplex structures and functions in the 5'-UTR. Investigation of the affinity and specificity of RNA binding proteins for 5'-UTR G quadruplexes and the resulting regulatory effects have also been limited. Among the mRNAs predicted to form a G quadruplex structure within the 5'-UTR is the survival motor neuron domain containing 1 (SMNDC1) mRNA, encoding a protein that is critical to the spliceosome. Additionally, this mRNA has been identified as a potential target of the fragile X mental retardation protein (FMRP), whose loss of expression leads to fragile X syndrome. FMRP is an RNA binding protein involved in translation regulation that has been shown to bind mRNA targets that form G quadruplex structures. In this study we have used biophysical methods to investigate G quadruplex formation in the 5'-UTR of SMNDC1 mRNA and analyzed its interactions with FMRP. Our results show that SMNDC1 mRNA 5'-UTR forms an intramolecular, parallel G quadruplex structure comprised of three G quartet planes, which is bound specifically by FMRP both in vitro and in mouse brain lysates. These findings suggest a model by which FMRP might regulate the translation of a subset of its mRNA targets by recognizing the G quadruplex structure present in their 5'-UTR, and affecting their accessibility by the protein synthesis machinery.


Assuntos
Regiões 5' não Traduzidas , Química Encefálica , Proteína do X Frágil de Retardo Mental/química , Quadruplex G , Fatores de Processamento de RNA/química , Proteínas do Complexo SMN/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Encéfalo/metabolismo , Encéfalo/patologia , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos , Ligação Proteica , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas do Complexo SMN/genética , Proteínas do Complexo SMN/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Termodinâmica , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...